Centralna Komisja Egzaminacyjna EGZAMIN MATURALNY 2012 MATEMATYKA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi MAJ 2012 2 Egzamin maturalny z matematyki Kryteria oceniania odpowiedzi - poziom podstawowy Zadanie 1. (0-1) Poprawna odpowiedź (1 p.) Wersja Wersja arkusza arkusza A B Obszar standardów Opis wymagań Modelowanie matematyczne Wykonanie obliczeń procentowych ( A D Zadanie 2. (0-1) Wykorzystanie Zastosowanie praw działań na potęgach i interpretowanie reprezentacji o wykładnikach wymiernych, obliczenie potęgi o wykładniku wymiernym ( Zadanie 3. (0-1) Wykonanie obliczeń na liczbach Wykorzystanie i interpretowanie reprezentacji rzeczywistych z wykorzystaniem wzorów skróconego mnożenia ( Zadanie 4. (0-1) Wykorzystanie Obliczenie wartości logarytmu ( i interpretowanie reprezentacji Zadanie 5. (0-1) Wykorzystanie Wykorzystanie pojęcia wartości i interpretowanie reprezentacji bezwzględnej do rozwiązania równania typu x ? a ? b ( Zadanie 6. (0-1) Wykorzystanie Obliczenie sumy rozwiązań równania i interpretowanie reprezentacji kwadratowego ( Zadanie 7. (0-1) Wykorzystanie i interpretowanie informacji Zadanie 8. (0-1) Wykorzystanie Wykorzystanie interpretacji i interpretowanie reprezentacji współczynników we wzorze funkcji liniowej ( A D Odczytanie z postaci iloczynowej funkcji kwadratowej jej miejsc zerowych ( A B C B B A B C A A B C Egzamin maturalny z matematyki Kryteria oceniania odpowiedzi - poziom podstawowy 3 Zadanie 9. (0-1) Wykorzystanie i interpretowanie informacji Zadanie 10. (0-1) Wykorzystanie i interpretowanie informacji Zadanie 11. (0-1) Wykorzystanie Wykorzystanie definicji do wyznaczenia i interpretowanie reprezentacji wartości funkcji trygonometrycznych danego kąta ostrego ( Zadanie 12. (0-1) Wykorzystanie Znalezienie związków miarowych i interpretowanie reprezentacji w figurach płaskich. Zastosowanie twierdzenia Pitagorasa ( Zadanie 13. (0-1) Wykorzystanie Znalezienie związków miarowych i interpretowanie reprezentacji w figurach płaskich. Zastosowanie twierdzenia Pitagorasa ( Zadanie 14. (0-1) Wykorzystanie i interpretowanie informacji Posłużenie się własnościami figur podobnych do obliczania długości odcinków ( D C D A B C B A Planowanie i wykonanie obliczeń na liczbach rzeczywistych ( D B Odczytanie z wykresu funkcji jej miejsc zerowych ( C D Zadanie 15. (0-1) Wykorzystanie Wykorzystanie związku między i interpretowanie reprezentacji promieniem koła opisanego na kwadracie i długością jego boku ( Zadanie 16. (0-1) Wykorzystanie i interpretowanie informacji Wykorzystanie związków między kątem wpisanym i środkowym do obliczenia miary kąta ( C B B C 4 Egzamin maturalny z matematyki Kryteria oceniania odpowiedzi - poziom podstawowy Zadanie 17. (0-1) Modelowanie matematyczne Obliczenie wyrazów ciągu arytmetycznego ( C B Zadanie 18. (0-1) Wykorzystanie i interpretowanie informacji Zadanie 19. (0-1) Wykorzystanie Obliczenie objętości sześcianu i interpretowanie reprezentacji z wykorzystaniem związków miarowych w sześcianie ( Zadanie 20. (0-1) Wykorzystanie Wyznaczenie wysokości stożka i interpretowanie reprezentacji z wykorzystaniem funkcji trygonometrycznych lub własności kwadratu ( Zadanie 21. (0-1) Wykorzystanie i interpretowanie informacji Zadanie 22. (0-1) Wykorzystanie Wykorzystanie pojęcia układu i interpretowanie reprezentacji współrzędnych na płaszczyźnie ( Zadanie 23. (0-1) Wykorzystanie Zbadanie czy dany punkt spełnia i interpretowanie reprezentacji równanie okręgu ( Zadanie 24. (0-1) Wykorzystanie Zliczenie obiektów w prostych sytuacjach i interpretowanie reprezentacji kombinatorycznych, stosowanie zasady mnożenia ( Zadanie 25. (0-1) Wykorzystanie Obliczenie średniej arytmetycznej i interpretowanie reprezentacji i interpretowanie tego parametru w kontekście praktycznym ( D A C B B D A D Wskazanie równania prostej równoległej do danej ( A B B C Obliczenie wyrazu ciągu określonego wzorem ogólnym ( B D A C Egzamin maturalny z matematyki Kryteria oceniania odpowiedzi - poziom podstawowy 5 Zadanie 26. (0-2) Wykorzystanie Rozwiązanie nierówności kwadratowej ( i interpretowanie reprezentacji Zdający otrzymuje ............................................................................................................1 pkt gdy: ? prawidłowo obliczy pierwiastki trójmianu kwadratowego x1 ? ?5, x2 ? ?3 i na tym poprzestanie lub dalej popełni błędy albo ? rozłoży trójmian kwadratowy x 2 ? 8 x ? 15 na czynniki liniowe i zapisze nierówność ? x ? 3?? x ? 5? ? 0 i na tym poprzestanie lub dalej popełni błędy albo ? popełni błąd rachunkowy przy obliczaniu pierwiastków trójmianu kwadratowego i konsekwentnie do popełnionego błędu rozwiąże nierówność, np. x1 ? 3, x2 ? 5, x ? ? ??,3? ? ? 5, ? ? albo 2 ? doprowadzi nierówność do postaci x ? 4 ? 1 (na przykład z postaci ? x ? 4 ? ? 1 ? 0 otrzymuje ? x ? 4 ? ? 1 , a następnie x ? 4 ? 1 ) i na tym poprzestanie lub dalej popełni błędy. 2 Zdający otrzymuje ............................................................................................................2 pkt gdy poda zbiór rozwiązań nierówności w postaci: ? ? ??, ?5 ? ? ? ?3, ? ? albo ? x ? ?5 lub x ? ?3 albo ? x ? ?5, x ? ?3 albo ? w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów. 1. Jeśli zdający poprawnie obliczy pierwiastki trójmianu x1 ? ?5, x2 ? ?3 i zapisze, np. x ? ? ??, ?5 ? ? ? 3, ? ? popełniając tym samym błąd przy przepisywaniu jednego z pierwiastków, to otrzymuje 2 punkty. 2. Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci ? ??, ?3? ? ? ?5, ? ? , to przyznajemy 2 punkty. Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki 6 Egzamin maturalny z matematyki Kryteria oceniania odpowiedzi - poziom podstawowy Zadania 27. (0-2) Rozumowanie i argumentacja Uzasadnienie prawdziwości nierówności algebraicznej ( I sposób rozwiązania Aby wykazać prawdziwość podanej nierówności, przekształcimy ją najpierw do prostszej postaci równoważnej. Rozpoczynamy od podanej nierówności: a?b?c a?b ? 3 2 Mnożymy obie strony tej nierówności przez 6: 2 ? a ? b ? c? ? 3? a ? b? 2c ? a ? b Uzyskana nierówność jest równoważna nierówności wyjściowej, zatem wystarczy wykazać jej prawdziwość. Z założenia wiemy, że c ? a oraz c ? b . Wobec tego 2c ? c ? c ? a ? b Co należało wykazać. Schemat oceniania I sposobu rozwiązania Zdający otrzymuje ............................................................................................................ 1 pkt jeśli przekształci podaną nierówność do postaci 2c ? a ? b lub ? c ? a ? ? ? c ? b ? ? 0 , Redukujemy wyrazy podobne: ?a ? b ? 2c ? 0 i na tym poprzestanie lub dalej popełni błędy. 6 Zdający otrzymuje ............................................................................................................ 2 pkt jeśli przedstawi kompletny dowód podanej nierówności. lub II sposób rozwiązania Zdający prowadzi ciąg nierówności, wychodząc od jednej ze stron podanej nierówności i na końcu dochodząc do drugiej. Założenie: 0 ? a ? b ? c a?b?c 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 a?b ? a? b? c ? a? b? b ? a? b ? a? b? b ? a? a? b ? a? b ? 3 3 3 3 3 3 3 3 3 3 6 2 3 6 2 2 2 2 Schemat oceniania II sposobu rozwiązania Zdający otrzymuje ............................................................................................................ 1 pkt jeśli co najmniej jedna z nierówności występująca w zapisanym ciągu nierówności wynika w sposób poprawny z podanych założeń, ale zdający nie podaje kompletnego dowodu wyjściowej nierówności. Zdający otrzymuje ............................................................................................................ 2 pkt jeśli poda kompletny dowód podanej nierówności. Egzamin maturalny z matematyki Kryteria oceniania odpowiedzi - poziom podstawowy 7 Zadanie 28. (0-2) Wykorzystanie i interpretowanie reprezentacji Rozwiązanie równania wielomianowego metodą rozkładu na czynniki ( Uwaga Gdy zdający poda poprawną odpowiedź (trzeci pierwiastek wielomianu: x ? ?3 ) nie wykonując żadnych obliczeń, to otrzymuje 1 punkt. I sposób rozwiązania Przedstawiamy wielomian W ( x) w postaci W ? x ? ? ? x ? 4 ?? x ? 3?? x ? a ? , gdzie a oznacza trzeci pierwiastek wielomianu. Stąd W ( x) ? x3 ? x 2 ? ax 2 ? 12 x ? ax ? 12a = x3 ? ?1 ? a ? x 2 ? ? ?12 ? a ? x ? 12a , Porównując współczynniki wielomianu W ( x) otrzymujemy ?1 ? a ? 4 ? ??12 ? a ? ?9 ?12a ? ?36 ? Stąd a ? ?3 . Trzecim pierwiastkiem wielomianu W ( x) jest liczba x ? ?3 . Schemat oceniania I sposobu rozwiązania Zdający otrzymuje ............................................................................................................ 1 pkt gdy przedstawi wielomian W ( x) w postaci W ? x ? ? ? x ? 4 ?? x ? 3?? x ? a ? i na tym poprzestanie lub dalej popełni błędy. Zdający otrzymuje ............................................................................................................ 2 pkt gdy bezbłędnie obliczy trzeci pierwiastek wielomianu: x ? ?3 . II sposób rozwiązania Przedstawiamy wielomian W ( x) w postaci iloczynu: W ( x) ? x3 ? 4 x 2 ? 9 x ? 36 ? x 2 ? x ? 4 ? ? 9 ? x ? 4 ? ? ? x ? 4 ?? x ? 3?? x ? 3? . Pierwiastkami wielomianu W ? x ? są zatem x1 ? ? 4 , x2 ? 3 oraz x3 ? ?3 . Odpowiedź: Trzecim pierwiastkiem wielomianu jest liczba x ? ?3 . Schemat oceniania II sposobu rozwiązania Zdający otrzymuje ............................................................................................................ 1 pkt gdy przedstawi wielomian w postaci iloczynu, np.: W ( x) ? ? x 2 ? 9 ? ? x ? 4 ? lub W ( x) ? ? x ? 4 ?? x ? 3?? x ? 3? lub W ( x) ? ? x 2 ? x ? 12 ? ? x ? 3? lub W ( x) ? ? x 2 ? 7 x ? 12 ? ? x ? 3? i na tym poprzestanie lub dalej popełni błędy. Zdający otrzymuje ............................................................................................................ 2 pkt gdy bezbłędnie obliczy trzeci pierwiastek wielomianu: x ? ?3 . 8 Egzamin maturalny z matematyki Kryteria oceniania odpowiedzi - poziom podstawowy III sposób rozwiązania Dzielimy wielomian W ? x ? przez dwumian ? x ? 4? Liczba ? 4 jest pierwiastkiem wielomianu W ? x ? , więc wielomian W ? x ? jest podzielny przez dwumian ? x ? 4 ? . Liczba 3 jest pierwiastkiem wielomianu W ? x ? , więc wielomian W ? x ? jest podzielny przez dwumian ? x ? 3? . Dzielimy wielomian W ? x ? przez dwumian ? x ? 3? x2 ? 7 x ? 12 ? x3 ? 4x2 ? 9x ? 36? : ? x ? 3? ? x3 ? 3x 2 7 x2 ? 9 x ?7 x2 ? 21x 12 x ? 36 ?12 x ? 36 ? ? Wielomian W ? x ? zapisujemy w postaci x2 ?9 ? x3 ? 4x2 ? 9x ? 36? : ? x ? 4? ?x3 ? 4x2 ? 9x ? 36 9x ? 36 ? ? Wielomian W ? x ? zapisujemy w postaci W ? x ? ? ? x ? 4? ? x ? 9? , 2 stąd W ? x ? ? ? x ? 4 ?? x ? 3?? x ? 3? . W ? x ? ? ? x 2 ? 7 x ? 12 ? ? x ? 3? . Wyznaczamy pierwiastki trójmianu x 2 ? 7 x ? 12 : x ? ? 4 i x ? ?3 . Liczby 3 i ?4 są pierwiastkami wielomianu W ? x ? , więc wielomian W ? x ? jest podzielny przez ? x ? 3?? x ? 4 ? = x 2 ? x ? 12 . Dzielimy wielomian W ? x ? przez ? ? ?x 2 ? x ? 12 ? x ?3 ? x3 ? 4 x2 ? 9 x ? 36? : ? x2 ? x ? 12? x3 ? x 2 ? 12 x 3x 2 ? 3x ? 36 ?3x 2 ? 3x ? 36 ? ? ? Zatem W ? x? ? ? x2 ? x ?12? ? x ? 3? ? ? x ? 3?? x ? 4?? x ? 3? . Zatem pierwiastkami wielomianu są: x1 ? ? 4 , x2 ? 3 oraz x3 ? ?3 . Odpowiedź: Trzecim pierwiastkiem wielomianu jest liczba x ? ?3 . Egzamin maturalny z matematyki Kryteria oceniania odpowiedzi - poziom podstawowy 9 Schemat oceniania III sposobu rozwiązania Zdający otrzymuje ............................................................................................................ 1 pkt gdy: ? wykona dzielenie wielomianu przez dwumian ? x ? 4 ? , otrzyma iloraz ? x 2 ? 9 ? i na tym poprzestanie lub dalej popełnia błędy albo ? wykona dzielenie wielomianu przez dwumian ? x ? 3? , otrzyma iloraz ? x 2 ? 7 x ? 12 ? i na tym poprzestanie lub dalej popełnia błędy albo poprzestanie lub dalej popełnia błędy albo ? wykona dzielenie wielomianu przez ? wykona dzielenie wielomianu przez x 2 ? x ? 12 , otrzyma iloraz ? ? ? x ? 3? i na tym ? x ? 4? lub ? x ? 3? , lub przez ?x 2 ? x ? 12 ? popełniając błąd rachunkowy i konsekwentnie do popełnionego błędu wyznacza pierwiastki otrzymanego ilorazu. Zdający otrzymuje ............................................................................................................ 2 pkt gdy bezbłędnie obliczy trzeci pierwiastek wielomianu: x ? ?3 . Uwaga Dzieląc wielomian W ? x ? przez dwumian ? x ? p? 4 0 zdający może posłużyć się schematem -9 -9 - 36 0 Hornera, np. przy dzieleniu przez ? x ? 4 ? otrzymuje -4 1 1 IV sposób rozwiązania Korzystamy z jednego ze wzorów Vi?te'a dla wielomianu stopnia trzeciego i otrzymujemy ?? 4? ? 3 ? x3 ? ? ? 36 , stąd x3 ? ?3 1 lub ?? 4? ? 3 ? x3 ? ? 4 , stąd x3 ? ?3 , 1 lub ?? 4? ? 3 ? ?? 4? ? x3 ? 3 ? x3 ? ? 9 . 1 Proste sprawdzenie pokazuje, że rzeczywiście W ?? 3? ? 0 Schemat oceniania IV sposobu rozwiązania Zdający otrzymuje ............................................................................................................ 1 pkt gdy poprawnie zastosuje jeden ze wzorów Vi?te'a dla wielomianu stopnia trzeciego i na tym poprzestanie lub dalej popełnia błędy. Zdający otrzymuje ............................................................................................................ 2 pkt gdy poprawnie obliczy trzeci pierwiastek: x ? ?3 . 10 Egzamin maturalny z matematyki Kryteria oceniania odpowiedzi - poziom podstawowy Zadania 29. (0-2) Użycie i tworzenie strategii Wykorzystanie własności symetralnej odcinka do wyznaczenia jej równania ( I sposób rozwiązania Obliczamy współczynnik kierunkowy prostej AB: 10 ? 2 ? 2 . 2 ? ? ?2 ? Zatem współczynnik ? 1? kierunkowy prostej prostopadłej do prostej AB jest równy ? ? ? . Symetralna odcinka AB ? 2? 1 ? ?2 ? 2 2 ? 10 ? ma równanie y ? ? x ? b . Punkt S ? ? , ? ? ? 0, 6 ? jest środkiem odcinka AB . 2 ? 2 ? 2 1 Symetralna tego odcinka przechodzi przez punkt S, więc 6 ? ? ? 0 ? b . Stąd b ? 6 , a więc 2 1 symetralna odcinka AB ma równanie y ? ? x ? 6 . 2 Schemat oceniania I sposobu rozwiązania Zdający otrzymuje ............................................................................................................ 1 pkt ? gdy poprawnie wyznaczy lub poda współrzędne środka odcinka AB: S ? ?0,6 ? oraz współczynnik kierunkowy prostej AB: a ? 2 i na tym poprzestanie lub dalej popełni błędy albo ? gdy popełni błędy rachunkowe przy wyznaczaniu współrzędnych środka odcinka albo współczynnika kierunkowego prostej AB i konsekwentnie wyznaczy równanie symetralnej albo ? gdy obliczy współczynnik kierunkowy prostej AB: a ? 2 oraz współczynnik 1 kierunkowy prostej do niej prostopadłej a1 ? ? i na tym zakończy lub dalej 2 popełni błędy. Zdający otrzymuje ............................................................................................................ 2 pkt 1 gdy wyznaczy równanie symetralnej odcinka AB: y ? ? x ? 6 lub x ? 2 y ? 12 ? 0 . 2 II sposób rozwiązania Obliczamy współrzędne środka odcinka AB: S ? ?0,6 ? . Obliczamy współrzędne wektora ??? ? AB ? ?4,8? . Ponieważ symetralna odcinka AB jest prostopadła do wektora AB i przechodzi przez punkt S, więc jej równanie ma postać 4 ? x ? 0 ? ? 8 ? y ? 6 ? ? 0 , czyli x ? 2 y ? 12 ? 0 . Schemat oceniania II sposobu rozwiązania Zdający otrzymuje ............................................................................................................ 1 pkt gdy wyznaczy współrzędne wektora AB : AB ? ?4,8? oraz środek odcinka AB: S ? ?0,6 ? i na tym poprzestanie lub dalej popełni błędy. Egzamin maturalny z matematyki Kryteria oceniania odpowiedzi - poziom podstawowy 11 Zdający otrzymuje ............................................................................................................ 2 pkt gdy poprawnie wyznaczy równanie symetralnej odcinka AB: x ? 2 y ? 12 ? 0 lub 1 y ? ? x?6. 2 III sposób rozwiązania Z rysunku w układzie współrzędnych y 11 10 9 8 7 6 5 4 y=2x+6 B S A 3 2 1 x 1 2 3 4 5 6 7 -4 -3 -2 -1 odczytujemy współrzędne punktu S ? ?0,6 ? , współczynnik kierunkowy symetralnej odcinka 1 1 AB: a ? ? i zapisujemy równanie symetralnej odcinka AB : y ? ? x ? 6 . 2 2 Schemat oceniania III sposobu rozwiązania Zdający otrzymuje ............................................................................................................ 1 pkt gdy odczyta, z dokładnie sporządzonego rysunku w układzie współrzędnych, współrzędne środka odcinka AB i współczynnik kierunkowy symetralnej prostej AB i na tym poprzestanie lub dalej popełni błędy. Zdający otrzymuje ............................................................................................................ 2 pkt 1 gdy zapisze równanie symetralnej odcinka AB: x ? 2 y ? 12 ? 0 lub y ? ? x ? 6 . 2 IV sposób rozwiązania Korzystamy z tego, że symetralna odcinka jest zbiorem wszystkich punktów równo oddalonych od jego końców. Jeśli punkt P ? ? x, y ? leży na symetralnej, to AP ? BP . Zatem ?x ? 2? ? ? y ? 2? ? ?x ? 2? ? ? y ?10? , czyli ?x ? 2? ? ? y ? 2? ? ?x ? 2? ? ? y ? 10? . Po uporządkowaniu równania i redukcji wyrazów podobnych otrzymujemy x ? 2 y ? 12 ? 0 . 2 2 2 2 2 2 2 2 Schemat oceniania IV sposobu rozwiązania Zdający otrzymuje ............................................................................................................ 1 pkt ?x ? 2? ? ? y ? 2? ? ?x ? 2? ? ? y ? 10? i na tym poprzestanie lub gdy zapisze równanie dalej popełni błędy. Zdający otrzymuje ............................................................................................................ 2 pkt 1 gdy wyznaczy równanie symetralnej odcinka AB: x ? 2 y ? 12 ? 0 lub y ? ? x ? 6 . 2 2 2 2 2 12 Egzamin maturalny z matematyki Kryteria oceniania odpowiedzi - poziom podstawowy Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki Jeśli zdający przepisze z błędem współrzędne punktów i wyznaczy konsekwentnie równanie symetralnej odcinka AB, to za takie rozwiązanie przyznajemy 2 punkty. Zadanie 30. (0-2) Rozumowanie i argumentacja Przeprowadzenie dowodu geometrycznego ( I sposób rozwiązania Niech ?BAC ? 2? , ?ABC ? 2 ? , ?ACB ? ? , ?APB ? ? . C ? P ? A ? ? ? ? B Suma miar kątów wewnętrznych w trójkącie równa jest 180? , więc w trójkącie ABC mamy 2? ? 2 ? ? ? ? 180? . Ponieważ ? ? 0? , więc 2? ? 2? ? 180? , stąd ? ? ? ? 90? . W trójkącie ABP mamy ? ? ? ? ? ? 180? . Stąd i z otrzymanej nierówności ? ? ? ? 90? wynika, że ? ? 90? . Oznacza to, że kąt APB jest kątem rozwartym. Co należało uzasadnić. Schemat oceniania I sposobu rozwiązania Zdający otrzymuje ............................................................................................................ 2 pkt gdy przeprowadzi pełne rozumowanie i uzasadni, że kąt APB jest kątem rozwartym. II sposób rozwiązania Niech ?BAC ? 2? , ?ABC ? 2 ? , ?ACB ? ? , ?APB ? ? . C ? P ? ? A ? ? ? ? B Egzamin maturalny z matematyki Kryteria oceniania odpowiedzi - poziom podstawowy 13 Ponieważ ? ? ? ? 180? oraz suma miar kątów wewnętrznych w trójkącie ABP jest równa 180? , więc otrzymujemy 1 1 1 ? ? 180? ? ? ? ? ? ? ? ?2? ? 2? ? ? ?2? ? 2? ? ? ? ? ? 180? ? 90? . 2 2 2 ? Ponieważ ? ? 90 , więc ? jest kątem ostrym, zatem ? jest kątem rozwartym. Oznacza to, że kąt APB jest kątem rozwartym. Co należało uzasadnić. Schemat oceniania II sposobu rozwiązania Zdający otrzymuje ............................................................................................................ 2 pkt gdy przeprowadzi pełne rozumowanie i uzasadni, że kąt APB jest rozwarty. Zadanie 31. (0-2) Modelowanie matematyczne Obliczenie prawdopodobieństwa zdarzenia z zastosowaniem klasycznej definicji prawdopodobieństwa ( I sposób rozwiązania (klasyczna definicja prawdopodobieństwa) Zdarzeniami elementarnymi są wszystkie pary uporządkowane ? x, y ? dwóch liczb ze zbioru ?1, 2,3, 4,5, 6, 7? . Liczba wszystkich zdarzeń elementarnych jest równa ? ? 7 ? 7 ? 49 . Iloczyn wylosowanych liczb jest podzielny przez 6, gdy: ? jedna z tych liczb jest równa 6 (wówczas druga jest dowolna) albo ? jedną z liczb jest 3, a drugą jest 2 lub 4. Liczba zdarzeń elementarnych sprzyjających zdarzeniu A jest więc równa A ? ? 2 ? 7 ? 1? ? 2 ? 2 ? 17 . Prawdopodobieństwo zdarzenia A jest równe: P ? A ? ? II sposób rozwiązania (metoda tabeli) 6 7 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 2 3 4 5 17 . 49 1 2 3 4 5 6 7 Symbole w tabeli oznaczają odpowiednio: ? - zdarzenie elementarne sprzyjające zdarzeniu A 17 . ? ? 7 ? 7 ? 49 i A ? 17 , zatem P ? A ? ? 49 14 Egzamin maturalny z matematyki Kryteria oceniania odpowiedzi - poziom podstawowy Schemat oceniania I i II sposobu rozwiązania Zdający otrzymuje ............................................................................................................ 1 pkt gdy ? obliczy liczbę wszystkich możliwych zdarzeń elementarnych: ? ? 7 2 ? 49 albo ? obliczy (zaznaczy poprawnie w tabeli) liczbę zdarzeń elementarnych sprzyjających zdarzeniu A : A ? 17 . Zdający otrzymuje ............................................................................................................ 2 pkt 17 . gdy obliczy prawdopodobieństwo zdarzenia A: P ( A) ? 49 Uwaga Jeśli zdający rozwiąże zadanie do końca i otrzyma P ( A) ? 1 , to otrzymuje za całe rozwiązanie 0 punktów. III sposób rozwiązania (metoda drzewa) Drzewo z istotnymi gałęziami: 1 7 2 7 1 7 3 7 6 7 7 Dowolna z siedmiu 2, 4 2 7 3 7 3 1, 5, 7 1 7 3, 6 2, 4, 6 6 Prawdopodobieństwo zdarzenia A (iloczyn wylosowanych liczb jest podzielny przez 6) 1 7 2 2 1 3 3 1 17 jest więc równe: P ? A ? ? ? ? ? ? ? ? ? ? . 7 7 7 7 7 7 7 7 49 Schemat oceniania III sposobu rozwiązania Zdający otrzymuje ............................................................................................................ 1 pkt gdy: ? narysuje pełne drzewo i przynajmniej na jednej gałęzi opisze prawdopodobieństwo albo ? narysuje drzewo tylko z istotnymi gałęziami. Zdający otrzymuje ............................................................................................................ 2 pkt 17 . gdy obliczy prawdopodobieństwo zdarzenia A: P ( A) ? 49 Uwaga Jeśli zdający rozwiąże zadanie do końca i otrzyma P ( A) ? 1 , to otrzymuje za całe rozwiązanie 0 punktów. Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki Jeżeli zdający poprawnie obliczy prawdopodobieństwo i błędnie skróci ułamek, 17 1 ? , to otrzymuje 2 punkty. np. P ( A) ? 49 3 Egzamin maturalny z matematyki Kryteria oceniania odpowiedzi - poziom podstawowy 15 Zadanie 32. (0-4) Modelowanie matematyczne Zastosowanie własności ciągu arytmetycznego i geometrycznego ( I sposób rozwiązania Ciąg ? 9, x,19 ? jest arytmetyczny, więc wyraz środkowy jest średnią arytmetyczną wyrazów sąsiednich: x ? 9 ? 19 ? 14 . 2 42 ? 3. 14 Wiemy, że ciąg ?14, 42, y, z ? jest geometryczny, zatem jego iloraz jest równy q ? Wobec tego y ? 3 ? 42 ? 126 i z ? 126 ? 3 ? 378 . Schemat oceniania I sposobu rozwiązania Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania zadania .......................................................................................................... 1 pkt 9 ? 19 lub ? wykorzystanie własności ciągu arytmetycznego i zapisanie, np. x ? 2 2 x ? 9 ? 19 lub x ? 14 albo ? wykorzystanie własności ciągu geometrycznego i zapisanie, np. 42 2 ? xy lub y 2 ? 42 z . Pokonanie zasadniczych trudności zadania .................................................................... 3 pkt Obliczenie ilorazu ciągu geometrycznego q ? 3 . Rozwiązanie pełne ............................................................................................................. 4 pkt Obliczenie x ? 14 , y ? 126 , z ? 378 . II sposób rozwiązania Ciąg ? 9, x,19 ? jest arytmetyczny, zatem 2 x ? 9 ? 19 , x ? 14 . Ciąg ?14, 42, y, z ? jest geometryczny, zatem 422 ? 14 ? y i y 2 ? 42 ? z , y? 1764 ? 126 i 1262 ? 42 ? z , stąd z ? 378 . 14 Schemat oceniania II sposobu rozwiązania Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania zadania .......................................................................................................... 1 pkt 9 ? 19 lub ? wykorzystanie własności ciągu arytmetycznego i zapisanie, np. x ? 2 2 x ? 9 ? 19 , lub x ? 14 albo ? wykorzystanie własności ciągu geometrycznego i zapisanie, np. 42 2 ? xy lub y 2 ? 42 z . Rozwiązanie, w którym jest istotny postęp ..................................................................... 2 pkt Obliczenie x ? 14 i zapisanie równania 422 ? 14 y lub 1764 ? 14 y . Pokonanie zasadniczych trudności zadania .................................................................... 3 pkt Obliczenie y ? 126 i zapisanie równania y 2 ? 42 z lub 1262 ? 42z . 16 Egzamin maturalny z matematyki Kryteria oceniania odpowiedzi - poziom podstawowy Rozwiązanie pełne .............................................................................................................. 4 pkt Obliczenie x ? 14 , y ? 126 , z ? 378 . Uwaga Jeśli zdający pomyli własności ciągów, to za całe zadanie otrzymuje 0 punktów. Zadanie 33. (0-4) Użycie i tworzenie strategii Obliczenie objętości wielościanu ( Strategia rozwiązania tego zadania sprowadza się do realizacji następujących etapów: a) obliczenie wysokości AE ostrosłupa, b) obliczenie pola podstawy tego ostrosłupa, c) obliczenie objętości ostrosłupa. Rozwiązanie a) Obliczenie pola podstawy ostrosłupa Podstawa ABCD ostrosłupa jest kwadratem o boku AB. Stosując wzór na przekątną kwadratu, 4 mamy: 4 ? AB 2 , stąd AB ? ?2 2. 2 Obliczamy pole P podstawy ostrosłupa: P ? 2 2 ? ? 2 ? 8 . b) Obliczenie wysokości AE ostrosłupa Rysujemy trójkąt EAC. 8 3 ?4 3. 2 c) Obliczenie objętości ostrosłupa AE ? 1 32 3. Objętość ostrosłupa jest równa V ? ? 8 ? 4 3 ? 3 3 Schemat oceniania Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania ......................................................................................................................... 1 pkt Obliczenie wysokości AE ostrosłupa: AE ? 4 3 albo obliczenie pola P podstawy ostrosłupa: P? 2 2 ? ? 2 ?8. Pokonanie zasadniczych trudności zadania..................................................................... 3 pkt Obliczenie pola podstawy i wysokości ostrosłupa. Egzamin maturalny z matematyki Kryteria oceniania odpowiedzi - poziom podstawowy 17 Uwaga Jeśli zdający obliczy jedną z tych wielkości z błędem rachunkowym, to otrzymuje 2 punkty. Rozwiązanie pełne ............................................................................................................. 4 pkt 32 Obliczenie objętości ostrosłupa: V ? 3. 3 Uwaga 1 we wzorze na objętość ostrosłupa, ale rozwiązanie 3 doprowadzi konsekwentnie do końca z tym jednym błędem, to za takie rozwiązanie otrzymuje 3 punkty. Jeśli zdający pominie współczynnik Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki Nie obniżamy punktacji zadania za błędy nieuwagi, np. gdy zdający poprawnie obliczył wysokość ostrosłupa, ale przy obliczaniu objętości ostrosłupa podstawił błędna wartość. Zadanie 34. (0-5) Modelowanie matematyczne Rozwiązanie zadania, umieszczonego w kontekście praktycznym, prowadzącego do równania kwadratowego ( I sposób rozwiązania Przyjmujemy oznaczenia np.: t - czas pokonania całej trasy w godzinach przez pociąg osobowy, v - średnia prędkość pociągu osobowego w kilometrach na godzinę. Zapisujemy zależność między czasem a prędkością w sytuacji opisanej w zadaniu dla pociągu pospiesznego: ? t ? 1? ? ? v ? 24 ? ? 210 ?t ? v ? 210 ? Następnie zapisujemy układ równań ? ?? t ? 1? ? ? v ? 24 ? ? 210 ? Rozwiązując układ równań doprowadzamy do równania z jedną niewiadomą, np.: ?t ? 1? ? ? 210 ? 24 ? ? 210 ? ? ? t ? 210 210 ? 24t ? ? 24 ? 210 t 24t 2 ? 24t ? 210 ? 0 4t 2 ? 4t ? 35 ? 0 ? ? 16 ? 560 ? 242 4 ? 24 5 4 ? 24 7 t1 ? ?? , t2 ? ? ? 3,5 8 2 8 2 t1 jest sprzeczne z warunkami zadania. Obliczamy czas przejazdu tej drogi przez pociąg pospieszny: 3,5 ? 1 ? 2,5 . Odp. Czas pokonania tej drogi przez pociąg pospieszny jest równy 2,5 godziny. 18 Egzamin maturalny z matematyki Kryteria oceniania odpowiedzi - poziom podstawowy II sposób rozwiązania Zapisujemy zależność między czasem a prędkością w sytuacji opisanej w zadaniu dla pociągu pospiesznego: ? t ? 1? ? ? v ? 24 ? ? 210 ?t ? v ? 210 ? Następnie zapisujemy układ równań ? ?? t ? 1? ? ? v ? 24 ? ? 210 ? Rozwiązując układ równań doprowadzamy do równania z jedną niewiadomą, np.: ? 210 ? ? 1? ? ?v ? 24 ? ? 210 ? ? v ? 5040 210 ? ? v ? 24 ? 210 v 5040 ? v ? 24 ? 0 v ?v 2 ? 24v ? 5040 ? 0 ? ? 576 ? 20160 ? 1442 24 ? 144 24 ? 144 ? ?84 , v1 ? ? 60 , v2 ? ?2 ?2 v2 jest sprzeczne z warunkami zadania. 210 210 7 Obliczamy czas przejazdu tej drogi przez pociąg osobowy: t ? ? ? ? 3,5 . v 60 2 Obliczamy czas przejazdu tej drogi przez pociąg pospieszny: 3,5 - 1 = 2,5. Odp. Czas pokonania tej drogi przez pociąg pospieszny jest równy 2,5 godziny. III sposób rozwiązania Przyjmujemy oznaczenia np.: t - czas pokonania całej trasy w godzinach przez pociąg osobowy, v - średnia prędkość pociągu osobowego w kilometrach na godzinę. v+24 v t?1 t Narysowane duże prostokąty reprezentują odległości przebyte przez obydwa pociągi, mają zatem równe pola. Wobec tego pola zakreskowanych prostokątów są równe. Stąd równość 24 ? t ? 1? ? 1 ? v . Droga przebyta przez pociąg osobowy wyraża się wzorem v ? t ? 24 ? t ? 1? ? t . Ponieważ trasa pociągu ma długość 210 km, otrzymujemy równanie 24 ? t ? 1? ? t ? 210 . Stąd 24t 2 ? 24t ? 210 ? 0 4t 2 ? 4t ? 35 ? 0 ? ? 16 ? 560 ? 242 4 ? 24 5 4 ? 24 7 t1 ? ?? , t2 ? ? ? 3,5 8 2 8 2 Egzamin maturalny z matematyki Kryteria oceniania odpowiedzi - poziom podstawowy 19 t1 jest sprzeczne z warunkami zadania. Zatem pociąg osobowy jechał przez 3,5 godziny, a pociąg pospieszny: 3,5 ? 1 ? 2,5 godziny. Odp. Czas pokonania tej drogi przez pociąg pospieszny jest równy 2,5 godziny. Schemat oceniania I, II i III sposobu rozwiązania Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania zadania ........................................................................................................ 1 pkt Zapisanie równania z dwiema niewiadomymi ? t ? 1?? v ? 24 ? ? 210 gdy t oznacza czas pokonania całej trasy w godzinach przez pociąg osobowy, a v średnią prędkość pociągu osobowego w kilometrach na godzinę, lub ? t ? 1?? v ? 24 ? ? 210 gdy t oznacza czas pokonania całej trasy w godzinach przez pociąg pospieszny, a v średnią prędkość pociągu pospiesznego w kilometrach na godzinę. Rozwiązanie, w którym jest istotny postęp ................................................................... 2 pkt Zapisanie układu równań z niewiadomymi v i t, np.: ?t ? v ? 210 ?t ? v ? 210 ? lub ? ? ?? t ? 1? ? ? v ? 24 ? ? 210 ??t ? 1? ? ?v ? 24? ? 210 ? Pokonanie zasadniczych trudności zadania .................................................................. 3 pkt Zapisanie równania z jedną niewiadomą v lub t, np.: ?t ? 1? ? ? 210 ? 24 ? ? 210 lub ? 210 ? 1? ? ? v ? 24 ? ? 210 lub 24 ? t ? 1? ? t ? 210 ? ? ? ? ? v ? ? t ? Uwaga Zdający nie musi zapisywać układu równań, może bezpośrednio zapisać równanie z jedną niewiadomą. Zostały pokonane zasadnicze trudności zadania, ale w trakcie ich pokonywania zostały popełnione błędy rachunkowe lub usterki .................................................................... 2 pkt Rozwiązanie zadania do końca lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe) ...................................................... 4 pkt ? rozwiązanie równania z niewiadomą v lub t z błędem rachunkowym i konsekwentne obliczenie czasu pokonania drogi przez pociąg pospieszny albo ? obliczenie czasu jazdy pociągu osobowego: t ? 3,5 i nie obliczenie czasu pokonania tej drogi przez pociąg pospieszny. Rozwiązanie pełne ........................................................................................................... 5 pkt Obliczenie czasu pokonania tej drogi przez pociąg pospieszny: 2,5 godziny. Uwagi 1. Jeżeli zdający porównuje wielkości różnych typów, to otrzymuje 0 punktów. 2. Jeżeli zdający odgadnie czas jazdy pociągu pospiesznego i nie uzasadni, że jest to jedyne rozwiązanie, to otrzymuje 1 punkt. 20 Egzamin maturalny z matematyki Kryteria oceniania odpowiedzi - poziom podstawowy Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki Przykład 1. Jeśli zdający przedstawi następujące rozwiązanie: v - prędkość pociągu osobowego, t - czas pokonania całej trasy w godzinach przez pociąg osobowy 210 v ? 24 ? t ?1 ?210 ? v ? t ? ? ?210 ? ? v ? 24 ? t ? 1 ? i na tym zakończy, to takie rozwiązanie kwalifikujemy do kategorii Rozwiązanie, w którym jest istotny postęp i przyznajemy 2 punkty, mimo że w drugim równaniu układu zdający nie 210 ujął wyrażenia t ? 1 w nawias. Zapis równania v ? 24 ? wskazuje na poprawną t ?1 interpretację zależności między wielkościami. Przykład 2. Jeśli zdający przedstawi następujące rozwiązanie: v - prędkość pociągu osobowego, t - czas pokonania całej trasy w godzinach przez pociąg osobowy 210 ? v? 210 ? 120 210 ? t v ? 24 ? ? 24 ? ? 210 t ?1 ? t t? v ? 24 ? ? t ?1 ? i na tym zakończy, to takie rozwiązanie kwalifikujemy do kategorii Pokonanie zasadniczych 120 210 ? 24 ? zdający trudności zadania i przyznajemy 3 punkty, mimo że w równaniu t t? przestawił cyfry w zapisie liczby 210 i pominął liczbę 1 w mianowniku ułamka. Przykład 3. Jeśli zdający otrzyma inne równanie kwadratowe, np. 4t 2 ? 4t ? 35 ? 0 zamiast równania 4t 2 ? 4t ? 35 ? 0 (np. w wyniku złego przepisania znaku lub liczby), konsekwentnie jednak rozwiąże otrzymane równanie kwadratowe, odrzuci ujemne rozwiązanie i pozostawi wynik, który może być realnym czasem jazdy pociągu pospiesznego, to takie rozwiązanie kwalifikujemy do kategorii Rozwiązanie pełne i przyznajemy 5 punktów. Komisje Egzaminacyjne - dane teleadresowe Centralna Komisja Egzaminacyjna kod: 00-190miejscowość: Warszawaadres: ul. Józefa Lewartowskiego 6kontakt tel.: (22) 53-66-500fax: (22) 53-66-504e-mail: ckesekr@ Okręgowa Komisja Egzaminacyjna w Gdańsku kod: 80-874miejscowość: Gdańskadres: ul. Na Stoku 49kontakt tel.: (58) 32-05-590fax: (58) 32-05-591e-mail: komisja@ pracy: - 191687916NIP: 583-26-08-016 Okręgowa Komisja Egzaminacyjna w Jaworznie kod: 43-600miejscowość: Jaworznoadres: ul. Mickiewicza 4kontakt tel.: (32) 78-41-601fax: (32) 78-41-608e-mail: sekretariat@ Okręgowa Komisja Egzaminacyjna w Krakowie kod: 31-978miejscowość: Krakówadres: os. Szkolne 37kontakt tel.: (12) 68-32-101fax: (12) 68-32-100e-mail: oke@ Okręgowa Komisja Egzaminacyjna w Łodzi kod: 94-203miejscowość: Łódźadres: ul. Praussa 4kontakt tel.: (42) 63-49-133fax: (42) 63-49-154e-mail: komisja@ Okręgowa Komisja Egzaminacyjna w Łomży kod: 18-400miejscowość: Łomżaadres: ul. Nowa 2kontakt tel.: (86) 21-64-495fax: (86) 473-71-20e-mail: sekretariat@ pracy: 8 - 16 Okręgowa Komisja Egzaminacyjna w Poznaniu kod: 61-655miejscowość: Poznańadres: ul. Gronowa 22kontakt tel.: (61) 85-40-160fax: (61) 85-21-441e-mail: sekretariat@ Okręgowa Komisja Egzaminacyjna w Warszawie kod: 00-844miejscowość: Warszawaadres: ul. Grzybowska 77kontakt tel.: (22) 45-70-335fax: (22) 45-70-345e-mail: info@ Okręgowa Komisja Egzaminacyjna we Wrocławiu kod: 53-533miejscowość: Wrocławadres: ul. Zielińskiego 57kontakt tel.: (71) 78-51-894fax: (71) 78 -51-866e-mail: sekretariat@ pracy: 8-16REGON: 931982940NIP: 895-16-60-154
Skończyliście już pisać maturę z matematyki? Co było na teście, na poziomie podstawowym? Był łatwy, czy trudny. Swoje opinie wpisujcie w komentarzach! Naszej reporterce udało się już poznać opinie uczniów z X Liceum Ogólnokształcącego im. Królowej Jadwigi w Matura była banalna, dużo prostsza niż zeszłoroczna. Było 34 zadania, które łatwo się rozwiązywało - mówi Aleksander Galecki z 3b, klasy o profilu Matura nie była trudna - potwierdza Michał z 3e. - Zadanie za 5 punktów, mimo, że najwyżej punktowane było dość łatwe. Trzeba było obliczyć siłę, Wczoraj bardzo podobne znalazłem w internecie, gdy powtarzałem materiał - Jedynym zaskoczeniem było dla mnie zadanie z prawdopodobieństwa. Chodzi o losowanie 2 liczb całkowitych od 1 do 7, losujemy ze zwracaniem. Musieliśmy obliczyć prawdopodobiństwo iloczynu wylosowanych liczb podzielnych przez 6. Zadanie było za 2 punkty - opowiada Piotrek z Zaskoczeniem były zadnia typu „wykaż że” na maturze podstawowej. Na szczęście za te zadania były tylko po 2 punkty… Liczę na około 90 % - powiedziała Ania z 3bPolecane ofertyMateriały promocyjne partnera
Egzamin maturalny z matematyki Poziom podstawowy 12 Zadanie 31. (5 pkt) Dwie szkoły mają prostoktne boiska. Przeką ątna każdego boiska jest równa 65 m. Boisko w drugiej szkole ma długość o 4 m większą niż boisko w pierwszej szkole, ale szerokość o 8 m mniejszą. Oblicz długość i szerokość każdego z tych boisk.
| Уሺуኧ αтυфι | ሩебըժе усխሮ |
|---|---|
| Еቮ иկаነእ табу | Тротриջа епсуկፁкէ |
| Խኜюֆуኑидр ሁутէցу | Шኄሰεጴጧнο էй υሉюችиби |
| Кυኞ ፏուкр ы | Чቡճիкр шусаփ |
| Уպ акт | Υпеጾ γ |
Marta Rosińska, Lynda Edwards, Monika Cichmińska. Repetytorium Matura 2023. Podręcznik do szkół ponadpodstawowych poziom podstawowy i rozszerzony. Zestaw Ucznia. 82,99 zł. U Ciebie 3 listopada - 6 listopada. Dodaj do koszyka. Opracowanie zbiorowe. Matematyka.
Jeśli przygotowujesz się do matury z matematyki, niezależnie, czy do rozszerzenia, czy też zdecydowałeś się na podstawę, koniecznie zakup kompleksowy zbiór zadań "Matura z matematyki 2018 - Poziom podstawowy i rozszerzony. Część 1" autorstwa Andrzeja Kiełbasy.Matura poprawkowa matematyka – sierpień 2017 – poziom podstawowy – odpowiedzi. Matura podstawowa matematyka 2012 Matura podstawowa matematyka 2011 Historia sztuki, matura 2012, poziom podstawowy. Historia sztuki, matura 2012, poziom rozszerzony. matura 2011 maj. kierunki po maturze z matematyki i angielskiego 9uw2Qt1.